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On a Zelevinsky Theorem and the Schur
Indices of the Finite Unitary Groups

By Zyozyu OHMORI

Abstract. Let G be the finite unitary group U, (Fy) over a finite
field Fy of characteristic p. Let U be a Sylow p-subgroup of G. We prove
that, for any irreducible character x of G that is contained in a certain
class, there is a linear character A of U such that (A\“, x)g = 1. As an
application, we shall determine the local Schur indices of an irreducible
character of G which belongs to such class.

1. Introduction

Let F; be a finite field with ¢ elements of characteristic p. In [4] I. M.
Gel’fand and M. I. Graev proved:

THEOREM A (Gel'fand-Graev [4, Theorems 1, 2]). Let H be the special
linear group SL,(F,) over Fy, and let U be the upper-triangular maximal
unipotent subgroup of H. Then

(i) For any irreducible character x of H, there is a linear character \ of
U such that (N, x)g # 0.

(ii) If X is a linear character of U in “general position”, then A7 is
multiplicity-free.

It is well known that the assertion (ii) of Theorem A holds for any finite
group of Lie type (T. Yokonuma [22], R. Steinberg [21, Theorem 49]; cf. R.
W. Carter [1, Theorem 8.1.3]). But the assertion (i) of Theorem A does
not hold generally for a finite group of Lie type (e.g. for U, (Fy), Span(Fy),
etc.).
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In [23] A. V. Zelevinsky proved:

THEOREM B (Zelevinsky [23, 12.5]). Let H be the general linear group
GL,(F,) and let U be the upper-triangular mazimal unipotent subgroup of

H. Then, for any irreducible character x of H, there is a linear character
A of U such that (M, x)g = 1.

As an application, Zelevinsky proved:

THEOREM C (Zelevinsky [23, 12.6], A. A. Kljacko [10]; cf. [15] for p #
2).  The Schur index mq (x) of any irreducible character x of GLy(Fy)
with respect to Q is equal to one.

The purpose of this paper is to show that Zelevinsky’s Theorem B holds
for a certain class of irreducible characters of U,(F;) (Theorem 1), and,
as an application, we show that, for any irreducible character x of U, (F)
contained in such class, we can determine the local Schur indices of x in
principle (Theorem 4).

As to the Schur indices of the irreducible characters of G = U, (F), it is
known that mq (x) < 2 for any irreducible character x of G (R. Gow [5]) and
that, for any irreducible character x of G, we have mq,(x) = 1 for any prime
number [ # p ([16]; for p = 2, we use some properties of the generalized
Gelfand-Graev characters of G [9]). For n < 5, all the local Schur indices of
every irreducible character of G are completely determined ([17, 6]). Our
result here is a certain contribution to the complete determination of the
local Schur indices of all the irreducible characters of G. (In another paper
[19], we give some sufficient conditions subject for that mg (x) = 1.)

As to the use of Kawanaka’s generalized Gelfand-Graev characters of a
finite group of Lie type for the study of the rationality-properties of the
irreducible character of such a group, we refer [18].

2. The unipotent values

2.1. Partitions

Let m be a positive integer. Let P, be the set of all partitions of m. If
u is a partition of m, then we write || = m. We denote by 0 the unique
partition of the number 0. P,, has the lexicographical ordering.
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If p = (m1,...,mg) is a partition of m > 0 and ¢/ = (m},... ,ml,) is
a partition of m’ > 0, then we denote by p + p’ the partition (mq,... ,ms,
my,...,m.) of m+m'. If p= (my,ma,...,m,) is a partition of m such
that m; =2 mg 2 -+ 2 ms 2 0 and ¢/ = (m),m),... ,m}) is a partition
of m’ such that m}y =2 mb = --- =2 m/, 2 0, then we denote by p - p’ the
partition (my 4+ m), ma +mb, ... ,ms+m,) of m+m'. If d,v are positive
integers and if m = (p1,pa,...,ps) is a partition of v, then we denote by

d - w the partition (dp1,dps, ... ,dps) of dv. If p is a partition of m, then fi
will denote the conjugate partition of p.

Let S, denote the symmetric group of order m!. Then, as is well known,
the conjugacy classes of S, and the irreducible characters of S,, can be
naturally parametrized by the partitions of m. For A, p € Pp,, let X;} or
P (p) denote the value of the irreducible character x* of S, corresponding
to A at the class of S, corresponding to p. It is well known that x(™ = 1 Ss
Y1) = sgn and x* = sgn-x* and it is easy to see by induction on v that
sgn(d-7) = (=1)@"Dvsgn(n), 7 € P,.

2.2. The irreducible characters of U, (F)

Let G = U,(F,;). Then, as to the character theory, by thanks to the
truth of Ennola conjecture ([3]; R. Hotta and T. A. Springer [8], G. Lusztig
and B. Srinivasan [13], G. Lusztig, D. Kazhdan, N. Kawanaka [9]), we can
use V. Ennola’s formulation in [3].

Let s be a positive integer. Then a set g = {k,k(—q),k(—q)?,...,
k(—q)*~'} of integers will be called an s-simplex with the roots k(—q)?, 0 <
i < s—1, if the k(—q)" are all distinct modulo g — (—1)*; we write d(g) = s.
Let ) be the set of all s-simplexes for s 2 1. Put P = J,,>¢ Pm(Po = {0}).
Let X be the set of functions v: Y — P such that -

> wlg)ld(g) = n.

gey

For v € X, set (formally)

XV:(...gV(g)...):(gifl...g]lf\;v)’

where gi,---, gy are all the g € ) such that v(g) # 0 and, for 1 £ i < N,
v; = v(g;). Then the x,, v € X, parametrize the irreducible characters of G.
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For v € X, we identify x, with the irreducible character of G corresponding
to it.

Let Q;}(q) be the Green polynomial of GL,(F,) ([7]). For m =
(17272373 ... ) € Py, put zpr = 1"712721513"3r3! - - If ny, ... ,ny are posi-
tive integers, then we put P, ny) = Py X =00 X Pry.

PROPOSITION 1. Let x = (g7* -+~ gx¥) be any irreducible character of
G =Up(Fy). For1 £i = N, putd; = d(g;) and v; = |v;]. Let X be a
partition of n, and let uy be any unipotent element of G of type A. Then
we have:

1
x(uy) = n(x) > X
™

Zr
(1o TNVEP 0y o o)

A
X Qd1-7r1+~~-+dN~ﬂ'N (_q)7

where n(x) = £1 such that x(uy) >0 if A = (1").

REMARK. We remark here about the relation between Ennola’s pa-
rametrization of the irreducible characters of G = U, (Fy) and G. Lusztig’s
parametrization ([11, 12]; also see [1, pp. 391-2]). Let G = GL,,(F,), where
F, is an algebraic closure of F, and let F’: G — G be the endomorphism
of G given by F'([g;;]) = t[ggj]*l for [gi;] € G. Then F’ is the Frobenius
map relative to some F-structure on G, and the group G (F,) = G '
of F-fixed points of G is isomorphic to G. The dual group G of G is
isomorphic to G. Let x = (g7* ---gx") be an irreducible character of G.
Then x is a unipotent character of G if and only if N =1, d(¢g;) = 1 and
0 is the root of g;. x is a semisimple character of G (i.e. p  x(1)) if and
only if, for 1 £ ¢ < N, v; = (v;) (vi = |vi|). And x is a regular character
of G (i.e. an irreducible component of the Gelfand-Graev character ' of
G) if and only if, for 1 < ¢ £ N, v; = (1%). Generally, the dual class
(g§1”) e g](\}vN)) determines the unique semisimple conjugacy class (s) of
G = G¥#(F,) (see [3, pp. 6-7]). The partitions vi,... ,vy determine a
unique unipotent character p of H(s) = (Zg#(s))#(Fq) (Zg#(s) is the
centralizer of s in G7). We see easily that y(1) = xs(1)p(1), where x4

is the semisimple character (ggvl) - g%’N ))

. This may be regarded as the
“Jordan decomposition” of y. Thus we can regard the mapping (s, p) — x
as Lusztig’s parametrization mapping for the irreducible characters of G

(ct. [11)).
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3. Linear characters of U

3.1.
We say that a partition u of n is involutive if the parts of 1 are arranged
so that u = (n1,n2,... ,Ns,Ns41,Ng, ... ,n2,n1) (possibly nsy1 = 0). For

example, if n = 4, then (4), (22), (212) and (1*) are the involutive partitions
of 4 and (31) is not involutive.
Let G = GL,(F,), and let F: G — G be the endomorphism of G
0o
given by F'([gi;]) = wé[ggj]*lwo, where wy = . . Then G =
1 0
G ~U,(F,).
Let U be the upper triangular maximal unipotent subgroup of G. Then
U is F-stable and U = U is a Sylow p-subgroup of G. For 1 <k <n—1,
SetUk:{u:[uij] EU|um-+1:0f0ri7ékanduij:Oifj—iEQ}.
Then, for 1 £ kK < n— 1, we have F(Uy) = U,,_, so F acts on A =
{1,2,...,n =1} by F(Uy) = Upy). Let I be the set of orbits of I on
A. Let U. be the derived group of U. Then U /U. = [[jca U For
i€l,set U;=[[c; Ur(CU/U.). Then we have UY /U.F' = (U /U ) =
[Lic; UL, Forie I, we have U ~ Fpor Fy.

Let u = (n1,... ,ns,Ms41,Ms, ... ,n1) be any involutive partition of n,
and put
_Al 0_
As
L,= Asi1 | A;, AL € GLy,(Fy),
A/
S
(LO Al

lgigaAﬁJEGLmAFﬁ}

(Ag41 does not occur in the above expression if ng 1 = 0). Put P, = L ,U.
Then P, is an F-stable parabolic subgroup of G and L, is an F-stable
Levi subgroup of P,. We put P, = Pf and L, = Lf;.
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Let ¢ be a linear character of U. Then ¢ can be regarded as a character
of U/U. (U. = U.F"). We say that ¢ is of type p if, for i € I, ¢ is non-trivial
on U; = UZF if U; ¢ L, and trivial on U; if U; ¢ L,. Conversely, it
will be clear that if ¢ is any linear character of U, then there is uniquely
determined involutive partition p of n such that ¢ is of type p.

Let ¢ be any linear character of U of type u. Let I'), be the Gelfand-
Graev character of L,. Then we have

¢G = IndIGDH (F#)a

where we regard I', as a character of P, through the natural map P, —
P,/V,, =L, (V, is the unipotent radical of P, and V, = fo)

4. Induced characters of G

4.1.

Let G = GL,(F,) andlet F': G — G be the endomorphism of G' given
by F'([gij]) = t[ggj]_l. Then F’ is the Frobenius map of G corresponding
to some F',-rational structure on G. We have G ~ Un(Fy).

Let Ty be the diagonal maximal torus of G'. Then T is F’-stable.
Let W = Wg = Ng(To)/To, where Ng(T) is the normalizer of T in
G . Then F’ acts on W trivially. W can be naturally identified with the
symmetric group S,. The G /—conjugacy classes of F-stable maximal tori
of G can be parametrized by the conjugacy classes of W = S,, and the
latter can be parametrized by the partitions of n. For p € P,, let T', denote
one of the F’-stable maximal tori of G corresponding to p.

Let p be a partition of n, and suppose that T, = yToy™, v € G.
Put w = y 'F'(y) mod Ty € W. Then ad y induces an identification:
(F'onT,) = (ad wo F’ on T), so we have:

’ d o ’
Ty | = T3 = |ep(—a)l,

where if p = (17127237 ... ), then c,(q) = (g — 1)"(¢* = 1)"2(¢3 — 1)"3 - - -.
In the following, if S is a maximal torus of a connected reductive group
M, then we write Was(S) = Nas(S)/S.
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Let p be a partition of n, and let s, be an element of S,, contained
in the class of S, corresponding to p. Then Wg (TP)F " s isomorphic to
We (To)* v°F" = Zg (s,), so we have

W (Tp)" | =125, (sp)| = 2.

Let F: G — G be as in §3. Then F acts on W by ad wp, and the
G F'-conjugacy classes of F-stable maximal tori of G can be parametrized
by the F-conjugacy classes in S,, ([2, p. 107]). For w € W, let T'(w) denote
one of the F-stable maximal tori of G corresponding to w.

Let w € W, and suppose that T'(w) = 2Tz~ with 271 F(2) mod Ty =
w. Then ad z induces an identification: (F on T'(w)) = (ad wo F on T'y),
so we have

!

F d woF d wwooF’
[T (w)"[ = T | = T5" " | = T )|

where p(wwy) is the partition of n corresponding to the class of W = S,
containing wwy.

In the following, if M is an F-stable (resp. F'-stable) reductive subgroup
of G, then we denote by o(M) (resp. by o/(M)) the Fjrank of M with
respect to the F,-rational structure on M determined by F' (resp. by F’).
Then it is easy to see that, for w € W, o(T'(w)) = /(T p(wwp))-

Let p be any partition of n. Then it is easy to see that ¢'(T,) is equal
to the number of even parts of p. So we have

(=1)7"T) = sgn(p).
We have (G ) = o(Ty) = [n/2], the integral part of n/2, so we have
(1) =0T (1) sgn(p(wue)), w e W

4.2. Green function

Let M be a connected, reductive algebraic group, defined over F,, and
let F”: M — M be the corresponding Frobenius endomorphism. If S is an
F"-stable maximal torus of M and 6 is a character of ST, then we denote
by RM () the Deligne-Lusztig virtual character of M F" and by Qs v the
corresponding Green function. We shall often consider Qg ar as a function
on all M by putting Qg ar(z) = 0 whenever x is not unipotent.
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Now assume that M = G with F” = F or F’. Let x be an element of
G such that 27 'F(z) = wy. Then ad x induces a bijection from G ¥ onto
G ", and we have Qr,,, @ (9) = Qrw).c(ad z(g)), g € G, Let \ be
a partition of n, and let uy (resp. u)) denote a unipotent element of GF

(resp. of G ¥ /) of type A. Then, by the result of Hotta-Springer-Kawanaka
(8], [9]), we have

QT(wwg),G (U‘)\) = Q;\(w)(_Q) = QTp(w)vG (U’/)\)7 w e W

4.3. The Gelfand-Graev character

Let Ig be the Gelfand-Graev character of G (let ¢/ be the lin-
ear character of U’ = (ad )~ '(U) corresponding (via the bijection ad
z: G — G in 4.2) to a linear character ¢ of U of type (n); then

I'e = Indg,F,(qﬁ’ )). Then, by Theorem 10.7 of [2], we have

_1)9'(G)=d'(T)
( 1) RG(Q),

FG —= G
(T ,6) %;d G (RS (0), RE(0)) o r

where the sum is taken over all G ¥ /—conjugacy classes of pairs (T, ) of F’'-
stable maximal tori T of G and characters 0 of TF . Let p be any partition
of n. Then, by using [2, Theorem 6.8], we see that

!
|y

1
6 mod %(Tp)F/ (R%p (9)7 R%, (9))G F! Zp

Thus we get
[n/2] )|
1) To = (-1 3 sen(p) L=, 6.

pPEPn
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4.4. Degenerate linear characters

Let u = (n1,... ,ng,Ms41,Ms, ... ,n1) be any involutive partition of n,
and let ¢ be any linear character of U = U¥ of type u. We assume that
p # (n). Let W, = W, (To) (a subgroup of W = Wg (Ty)). Then we
have

Wy =28,=5n X+ XSy, XSn, 1 XSp, X+ X5p,.

s+1

By [2, Theorem 10.7, Proposition 8.2], we have

w0y e T g
T mod L, ‘WL“(T)F’ o

(TcLy,)

where the sum is taken over all L -conjugacy classes of F-stable maximal
tori T' of L ,.

F acts on Wg ,(To) = S, by ad wo. The L,-conjugacy classes of F-
stable maximal tori of L , can be parametrized by the F’-conjugacy classes
of S,. S, acts on S,wy by conjugations. We see that, for wy,ws € S, w1
is F’-conjugate to wy in S, if and only if wiwyg is S,-conjugate to wowg in
S,u’w().

Let w be an element of S,, and suppose that T(w) = yToy™!, y €
L, (y"'F(y) mod Ty = w). Then ad y induces an identification: (F on
Wi ,(T'(w))) = (ad wo F on Wg ,(To)). Therefore we have:

(W, (T(w)"| = [Widwer]
|W;1d wwooF’|

W
|KWuw0 (ww0)|’

where Ky, w, (wwo) is the W ,-orbit of wwg in W,wo under the conjugate
action of W,.
Therefore we have

GF _ _1\o(G)—0o(T(w)) |T(w)F’
¢ - Z ( 1) |WLH(T(U)))F‘QT(UJ),G7

wwg mod W
(weW,)
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so, if ¢’ is the linear character of U’ = (ad x)~}(U) corresponding to the
linear character ¢ of U, we have

F! o o ’

wwg) ‘
wwo mod W,
(weWy)

[ KW, w0 (wuwo) |
WQTMW{UO)’G

> { S (1)) )

w’ mod W \wwg mod W,
(w'eW) wwg~w’
(weWy)
F ‘KWuwo (wwp)|
X |Tp(w/)’ ’W“’ QTp(w/),G

(“~” means conjugate in W)

| K, (s,) NS w
= 3 (g EER Sl

where, for p € P, s, is an element of S, contained in the class of S,
corresponding to p and Kg, (s,) denotes the class of s, in S,.

Let us express the | Kg,, (s,)NS,wo|/|Sy| in terms of characters of S,. Let
H = (Su,wo). Then (H : S,) = 2 (note that wy ¢ S, and woS,wo = Sy).
Let € be the linear character of H defined by

1 it x €S,
{(z) = .
-1 it xe H-S,.
Let
X =1g =&
Then we have

Kg, (s N S,wo
R
1w

It is well known that one has:

L5 =X Dk
V>
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15" = 137 +

where the kj; are certain non-negative integers. As £5 | we see

that the irreducible components of 1S and £ are contalned in 19 Shy we
have

XSn — 1Sn . SSn

= eux” + Z X’
V>

where €, = 1 or —1 according as x* is contained in 1%‘ or &5 respectively

and the ¢, are some integers. Thus we have:

! F/
2 @€ =3 (-1 Fsgn(p <6 X,ﬁzcuxp) . |Q:rp,

pEPn US>

5. Inner products

5.1. Some preliminaries

Let m be a positive integer, and let z1,... ,x,, be m different variables
over Q. For a partition A = (Iy,... , ) of m with l; = --- 2 1,, 20, set
l;
det[x; e ]]1§i,j§m
Sx(T1,y ... ,xm) = o ,
detlzy" i< j<m
which we call the S-function in the variables x4, ... ,x, corresponding to
A (see Macdonald [14, p. 24]).

Let my,... ,my be positive integers such that mi 4 --- +mp = m, and,
for 1 =i <k, let \; be a partition of m;. Let Z1,... , Ty Yty s YUmgs -« -
21,...,%m, be independent variables. Suppose that

Sa (@1, T )8 (UL oo s Yma) S (B -5 Zmy)
= Z cilh___/\ks;\(xl, T YL e Ymas e 521 Zmy )

AEPm

)\ . .
where c>\1>\2~-->\k’s are some non-negative integers. Then we have ([14, I,

(7.3)]):

Sy, A1 Ao oo ey Z A A
Indsmlxsmx XSy, (XM X X % X x*) = SV ¢
AEP,
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LEMMA 1 (see, e.g., [15, (2.4)]). If A > A1-Aa-----Xp or A < A\ +
A2+ -+ + Ak, then we have Ci\lAg---Ak =0, and, if A=Ay -Ag----- A or
A=A+ Ao+ -+ Mg, then we have C:\\1>\2-~>\k =1.

By the Frobenius reciprocity law, we get:

A A A A
X ‘Smlx...xsmk: Z C}\l.“)\kxlx...XXk.
()‘1?"'7>‘k)€7>m1><"'><7)mk

5.2.

Let G = G ~ Un(Fg). Let x = (g7*---g5Y) be any irreducible
character of G. For 1 < i < N, put d; = d(¢;), v; = |vi|. For a partition
p of n, we put Q, ¢ = Qr, c. Then, by Proposition 1, by the formula (1)
and by the orthogonality relations for the Green functions of G, we have:

=

N 1, Ui
(Fa,X)e = (—~1)/Armm@=vip ) TT(x", 1s,,) s,
=1

{1 if vy = (1%) for 1 £ i < N,
0 if v; # (1) for some i.

This is a known result (see the remark in §2.2).

Next, suppose that ¢ is any linear character of U = U¥', of type u, and
suppose that g # (n). Let ad z: G — G T be an isomorphism as before
(z7'F(x) = wp), and let ¢ be the linear character of U’ = (ad )~ *(U)
corresponding to ¢ via ad xz. Then, by Proposition 1 and the formula (2),
we get:

(@ X)a = (D)"Y " sgn(p (6uxp + Zcuxp> 7[))’ x 1(x)

pPEPn v>p
1
v 17
X > o Xm o Xaw (@6, Qog)a
(Wl,---,WN)EPvl X"'XP’UN ﬂ—l ™
o=dy-m1++dN-TN
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By the orthogonality relations for the Green functions, we see that the latter
expression of the above equality is equal to

(=) (x) Z sgn(p (euxp +> cuxp>

Ty V>
p=di- 7T1+ +dN TN
1
X —— A\ML L UN
Zﬂ—l"'Zﬂ—NXﬂ-l Xﬂ'N
N o )
= (_1)[n/2]+2¢:1(d1 1)Uz77(X) § : <€MXp +§ :CuXp>
Ty ;TN v>p
p=di-mit++dN-TN
1 N N
X — M VN
Z7r1"'Z7rNX7rl Xﬂ’]\]

Put 7(x) = (—~1)M/AFTE@Dvig(y). For 1 < i < N, put n; = dyvy.
Then, by a remark in 5.1, we see that the last expression in the above
equality is equal to:

U(X), Z Z <Eucgl...5N + Z Clylcléll"'&v)

Tl N (€1, EN)EPny XX Py v>p
51 fN ]' 171 I)N
X Xdyom " Xdy -y PR — . Xk XN
1 T™™N
e X I T
- H &1€n X Xty s
€1, 6N =1 wierZ i

1
+Z Z 051 £NH Z 7X7rlell T }

v>p &1, 1=1 \mEPy, g

LeEMMA 2 ([15, (2.8)]). Let d,v be positive integers. Then one has

Z1 . {1 ife=d v,
XeXix =0 idgsdov

TEPy
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Assume that g = (dy - 74) - -+ - (dy - Dn). Then, by Lemmas 1, 2, we
see easily that the last expression in the above equality is equal to 1(x)¢e,.
But, as (¢'“, x)¢ = 0, we must have (¢'“, x)g = 1.

Thus we get

THEOREM 1. Let x = (97" -+ g3) be an irreducible character of G =
Un(Fy). Suppose that pn = (d(g1) - 1) - -+ - (d(gn) - UN) is an involutive
partition of n. Let ¢ be a linear character of a Sylow p-subgroup U’ of G of
“type 1n”. Then we have (¢©,x)q = 1.

6. The Schur index

6.1.
Let G = Uy (F). Then the following two results are known:

THEOREM 2 (R. Gow [5]). The Schur index mq (x) of any irreducible
character x of G with respect to Q s at most two.

THEOREM 3 (cf. [16] for p # 2). Let x be any irreducible character of
G. Then, for any prime number | # p, we have mq,(x) = 1.

In [16] Theorem 2 is proved for p # 2. We give here a proof of this
theorem which is valid for all p. Let x be any irreducible character of G.
Then, by a result of Kawanaka [9], there is a generalized Gelfand-Graev
character 7, of G such that (v, x)e =1 ([9, (3.2.18), (3.3.24)(i)]). v, is of
Q -valued ([9, (3.2.14)]) and is supported by a set of unipotent elements of
G (this is clear from the construction of ,). Then, by [20, Theorem 34 in
p. 145, Proposition 33 in p. 106], we see that, for any prime number [ # p,
7y is realizable in @ ;. Thus we have mq,(x) = 1.

6.2.

Let us review some results in [17, §3]. Let G be as above, and let U be
a Sylow p-subgroup of G. Let U. be the derived group of U. If p = 2, then
U/U. is an elementary abelian 2-group, so that any linear character of U is
realizable in @Q .

Assume that p # 2. Let ¢, be a fixed primitive p-th root of unity, and
let o be a certain generator of Gal(Q (¢p)/Q ).
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First, assume that n is odd. Then there is an element ¢ in Ng(U), of
order p—1, such that ¢! = ¢* for any linear character ¢ of U, where ¢' is the
linear character of U defined by ¢'(u) = ¢(tut!), u € U. Put M = U{t).
Then we see that, if ¢ is any non-principal linear character of U, ¢M is
an irreducible character of M which is realizable in @ . Therefore, for any
linear character ¢ of U, $© is realizable in Q.

Next, assume that n is even (p # 2). We use the notation in 3.1. Let
= (ny,...,ng,Nsy1,MNs,...,n1) be any involutive partition of n, and let
¢ be any linear character of U of type pu. Then we have ¢© = IndIGDH(FM).
We have

LN ~ HGan(Fq2) X Uns+1 (FQ)
=1

Therefore, if ng41 = 0, then, by Gow’s theorem ([5]), I',, is realizable in @,
so ¢© is realizable in Q.

Assume that ngy1 # 0. Then, as n is even, ngy1 is even. There is an
element ¢’ in Ng(U), of order (p—1)(g+1), such that ¢! = ¢* and ¢ = 7!
is a generator of the centre Z of G. Put M’ = U(t'). For 0 < j < g, let ¢; be
the extension of ¢ to U(c) given by ¢;(c) = Cg_H, where (441 is a previously
fixed primitive (¢ 4 1)-th root of unity. For 0 < j < ¢, let v; = ¢§W. Then
we see that the v; are irreducible characters of M’ and oM =+ + Vg.
For 0 < j < ¢, let k; = Q (v;), the field generated over Q by the values
of vj. Then we have k; = Q ( g+1)= 0=j<q For0=j =g, let Aj be
the simple component of the group algebra k;[M’] of M’ over k; associated
with vj. Then, for 0 £ j < ¢, if j # (¢ + 1)/2, A;j splits in k;, and if
j = (¢ +1)/2, k; has non-zero Hasse invariants (= 1 mod 1) only at the
places oo, pof k; = Q.

We have:

THEOREM 4. Let x = (97" ---g3) be an irreducible character of G =
Un(Fy). Let o = (d(g1)-01)-----(d(gn)-Dn). Assume that p is an involutive
partition of n, and suppose that = (nq,... ,Ng,Ng41,Nsy ... ,n1). Then:

(i) If p=2, orn is odd, or ngy1 =0, then we have mq (x) = 1.

(ii) Assume that p # 2, n is even, and ng11 # 0.

Recall that c is a generator of the centre of G. Then, if x(c) # —x(1), we
have mgq (x) = 1. Assume that x(c) = —x(1). Then we have mg(x) = 2
or 1 according as x is real or not respectively, and we have me(X) =2 or
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1 according as [Q ,(x) : Q] is odd or even respectively (Q ,(x) is the field
generated over Q , by the values of x).

ProOF. We use the notation in 3.1. Let ¢ be any linear character of
U of type p. Then, by Theorem 1, we have (¢, x)g = 1. Then, as we have
observed above, if p = 2, or n is odd, or ngy, = 0, ¢@ is realizable in Q, so
we have mq (x) = 1. Assume therefore that p # 2, n is even, and ns11 # 0.
We have x(c) = g+1X(1) for some j, 0 < j < ¢q. Then, by Schur’s lemma,
we must have (x,vj)ay = 1. If j # (¢+1)/2, then v; is realizable in k; and
Q (x) D kj, so we have mq (x) = my,; (x) = 1. Suppose that j = (¢4 1)/2.
Then we have mpg (v;) = mq (v;) = 2. Therefore the last assertion follows
from properties of Hasse invariants. [
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