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The Stickelberger Elements and the Cyclotomic Units

in the Cyclotomic Z,-Extensions

By Takae Tsuu1

Abstract. For an odd prime number p and a cyclotomic field K,
we will describe a relation between the Stickelberger element and the
cyclotomic unit which are defined with respect to the cyclotomic Zp-
extension over K. This is a generalization of a theorem of Iwasawa and
Coleman

1. Introduction

Let p be an odd prime number and N an integer prime to p such that
N # 2 mod 4. We put K, := Q((ypn+1) for all n > 0 and Ko := |J K.
Here (ppn+1 denotes a primitive N p"t1-th root of unity. The Stickelberger
element @y and the cyclotomic unit ny are defined with respect to the
cyclotomic Zj,-extension Ko, /K( as below. Our purpose of this note is to
describe a relation between the Stickelberger element €y and the cyclo-
tomic unit ny.

First we recall the definition of @y and 7,. The Stickelberger element
Onpn+r € Qp[Gal(K,/Q)] is defined by

a 1N 4
0Np7L+1 = Z (W - 5)0-(1 ’Kn7

1<a<Npnt1
(a,pN)=1

where o, denotes the element of Gal(K/Q) satisfying o, (Cnpn) = (Cnpn )®
for all n > 0. We put
0N = (ean-H)nZ(].

For every integer ¢ prime to Np, it is known (cf. [W, Lemma 6.9]) that

(1= coz!) Oy € Z,[[Gal(Kw/Q)]] := lim Zy[Gal(K,,/Q))],
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where the projective limit is taken with respect to the restriction maps. For
every s € N, we fix a primitive s-th root (s of unity with the property that
Ct, = (5. We define the cyclotomic unit

S
NNpn+l = 1-— CNCpn-H S Kg

We shall regard 7y,»+1 as an element of ®,, the p-adic completion of (K, ®
Qp)*. We put
NN = ((77an+1)Fr;n)n20 € lln(bn,

where the projective limit is taken with respect to the relative norms and Fry,
denotes the Frobenius element of p in Gal(Q(ux)/Q). Let Uk, denote the p-
adic completion of (O, ®zZ,)*. Put Uk, = lim U, , where the projective
limit is taken with respect to the relative norms. Then ny € Ux_ if N # 1,
and 777 € Uk, for any o € Gal(K../Q).

In [Iw], Iwasawa proved a beautiful theorem which describes a relation
between the Stickelberger element 6; and the cyclotomic unit 7;. After
that, in [C1] and [C2], Coleman gave a simpler proof of the above theorem
by defining a Z,-homomorphism

v u@(cpoo) — Zp[[Gal(@(Cp‘”)/Q)Ha

which is almost isomorphism. Here Q((p~) = |JQ((p»). The above men-
tioned theorem is stated as follows.

THEOREM 1.1 (Iwasawa, Coleman [C2, Proposition 6]). For every in-
teger ¢ prime to p, we have

V() = (1 - coc) 6],

where 0 — 0* is the involution of Z,[[Gal(Q({p=)/Q)]] induced by o — o=+
for any o € Gal(Q((p~)/Q).

We shall extend this result for Oy and 7y (N > 1). Similarly to
Theorem 1.1, our main theorem (Theorem 2.1) is also stated using the
homomorphism W, which is also defined for Ug(¢ypoo)- We give two different
proofs. The first one (in §2) is a modification of Coleman’s method, and
is direct one in the sense that we use only some properties of ¥ (and the
definitions of @ and 7,7). On the other hand, both 8y and 7, are related
to the Kubota-Leopoldt p-adic L-functions. We see in §4 that Theorem 2.1
is also induced from these classical relations.
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2. The Results

We use the same notation as in the Introduction. Put G :=
Gal(Q(¢p~)/Q) and A := Gal(Q(¢{n)/Q). Then Gal(K~/Q) = G x A
since N is prime to p. We write O = Z[(N] ®7 Zp, the p-adic comple-
tion of the integer ring of Q(({y). Coleman proved that there exists a
Zp-homomorphism

U U, — O[[Godll,

with the property that ¥(u?) = k(0)o¥(u) for all u € Ui, and all o €
Gal(Kw/Q), where k : Gal(Ko/Q) — Z,; is the p-cyclotomic character
(cf. [C1], [C2] and [G, §2]). To compare (1 — co. ') Oy € Zy[A][[Gool]
and 7y € Uk, by using ¥, we need to determine a Z,[A]-isomorphism
o= Zp|A], that is, to fix a generator of O as Zp|A]-module. For such
a generator, we can take Leopoldt’s “Basiszahl” defined as follows: For a
positive integer m, we put

Dy :={deN|d|m, s(m)]|d},

where s(m) denotes the product of all distinct prime divisors of m. We
define an element zy of O by

ZN ‘= Z Cd-

deDpn

By using zx, Leopoldt [Leo] (see also [Let]) described the structure of Z[(x]
as Z[A]-module. (Actually, in [Leo] and [Let], the Galois module structure
of the ring of integers of an abelian number field is described by using
“Basiszahl”.) Using this result, we see that zy generates the Z,[A]-module
O (see also Lemma 3.1). Our main theorem is to describe the relation
between (1 — co, ') Oy and 7, using ¥ and zy.

To state our result, we need some notation. We define the Stickelberger
element 6y and the cyclotomic unit 7,4, for d | N, as in the case where
d = N. For an integer ¢ prime to p, let v, denote the element of G
satisfying ve((pn) = (pn for all n > 0. For a prime number [, let é; denote a
Frobenius element of [ in A. If d is a divisor of IV, we denote by Cory 4 the
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corestriction map from Z,[Gal(Q(¢q)/Q)][[Goo]] to Zp[A][[Goo]] induced by,
for all 7 € Gal(Q(¢y)/Q),
T Z 0,

bloey)=T

where ¢ runs over automorphisms in A whose restriction to Q((y) is 7. Let
1 denote the Mobius u-function.

DEFINITION. We define Gy by

1 et p(d/d’) ot ol B
oW %\;ﬁyd(ugm(l Vo )cl/eZDd [Q(CN):Q(Cd/)]C wat ),

where d runs over all divisors of NV and [ over all prime divisors of N which
do not divide d, and $Hn by

N = H H( ﬂd/d')#(d;zvd/ ;

deDy d'|d

where d’ runs over all divisors of d and we regard 1/d’ as an element of Z,.

Since ¢; 'Cory g ( 04) = Cory (61_1|Q(Cdr) 0s), Sy does not depend on
the choice of §;. We note that .6]1\,_% €Uk, and (1—cy 1) Oy € Z,[A][[Goo]]
for all ¢ prime to p.

If N is square-free, the above definitions are just as

B w(d)y,
GN:ZM(CZ)O'dlCOI'NJ\[/d( 0N/d)v fJN :H( nN/d) d d>
d|N d|N

where o4 denotes an element of Gal(Kw/Q) satisfying o4((n/apnt1) =

(Cv/aypm+1)™
The main result of this note is the following.

THEOREM 2.1. For every integer ¢ prime to p, we have the following
equations in O[[G]]:

U(HNT) = (1 - eve) Bz,
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and
U(ny) =6yan.

Here 0 — 0* is the involution of Zy[A][[Gso]] induced by o — o1 for any
0 €A XGy.

REMARK. The description of @y (resp. ¥( ny)) by ¥(n,) (resp. 6)
with d | N and zy is not unique. Indeed, there are relations between 6y
and @, (resp. my and n,), for a prime number [, as follows:

(2 1) 0 | _ { 0, l | d
and

. . n;ln l ’ d
(2.2) did( Ma) = 7’((171—6,‘1) 11d,

where Ny ¢ denotes the norm map from Q({gipe) to Q((apee)-
3. Proof of Theorem 2.1

In this section we prove Theorem 2.1 by using the properties of ¥ :
U, — CA’)[[GOO]] We need the following lemma. Although this follows
from Leopoldt’s Theorem and the facts which are used in his proof ([Leo],
see also [Let]), we give a proof for the convenience of the readers.

LEMMA 3.1. The element zy = ZdGDN Cq4 generates the additive

Zp|A]-module O which is free of rank one. Furthermore, for a positive
divisor m of N, we have

6!

(31)  Trgexy/ac. (zv) = [QCN) : QG)I( ]

[|N,ltm

l)(zm)

_ _ pim/d) s
(3.2) Cm = (l|gm(1 l)él)dgl;m [Q(Cy) : Q(Cd)]T Q(CN)/Q(Cd)( N)-
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ProOOF. The additive Z,[A]-module O is generated by (,, with m | N.
Therefore the first assertion follows from (3.2).

For the equation (3.1), it suffices to verify the case where m = N/q
with a prime divisor g of N. Let d be a divisor of N. When d {1 N/q, the

minimal polynomial of (4 over Q((q/q) is (X — (q/q)/(X — 6q*1(§'d/q)) =
Z?;é Xq_l_i(éq_l(gd/q))i (resp. X7 —(y/q) if ¢ 1 d (resp. ¢* | d). Then we
have the following:

—64"" (Casq) dfN/q, ¢*1d,
Try n/g(Ca) =4 0 dtN/q, ¢*|d,
[Q(CN) : QChyq)]Ca d|N/q,

where Try /g = TrQ(CN)/Q(CN/q)' If we assume g2 { N, we have Dnyjq =
{d/q | d € Dy} and, for any d € Dy, d 1 N/q and ¢ { d. On the other
hand, if we assume ¢* | N, we have Dy, = {d € Dy | d | (N/q)} and ¢* | d
for any d € Dy with d{ N/q. Hence we obtain

_6(1_1(ZN/q) QQTNa

Ten njg(2n) = { [Q(CN) = QCnyg)]2Nyqg ¢ | N.

This proves the equation (3.1) for m = N/q.
The equation (3.2) follows from the equation (3.1) and the following
equality:

Gn=>_ (> wd))a

d'€Dy  d|(m/)d)

=> (> M(%))Cd/

€Dy, dlm, d'|d

= Z M(%) Z Car

de€Dm d'€Dy
= > w5z
d€Dm,

We complete the proof. [J
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PrOOF OF THEOREM 2.1. First, we briefly recall the definition of the
map U : Ux, — O[[Gso]]. For details, see [C1], [C2] and [G, §2]. Let
u = (uy) be an element of Uk . There exists a unique power series f,(X)
in O[[X]] satisfying

n
Frp

(3.3) Ju(Cpne1r — 1) = uy,
Let ¢ be an endomorphism of @[[X ]] defined by

(f)(X) = [ (1 + X)P — 1),

where Fr,, acts on f(X) via the coefficients. Let D be the derivation (1 +
X) % of O[[X]]. Then there is a unique element ¥(u) of O[[Gx]] satisfying

(1 - (p)D log fu(X)|X:§pn+1—1 = \I’(U)Cpau-l

for all n > 0, which is the definition of ¥ : Ux,. — O[[Guo]].
Put
fn(X)i=1=(n(1+X)
and /
Fx(0) =TT 10 - Gt + x)™)".

deDy d'|d

One can easily verify that fn(X) (resp. fn(X)) satisfies (3.3) with respect
to my (resp. to Hn). It suffices to show the following two equations

(3.4) (1= @)D log fr(X)|x—c, 11 = Shan G,
(3.5) (1= @)Dlog fn(X)|x=¢u1-1 = OnanGpnir.
As in the proof of Theorem 1.1 given in [C2], we use the following.

LEMMA 3.2 (cf. [C2, Proposition 5], [G, Lemma 2.15]).  Form > 1 and
n > 1, we have

Cmqp”""l CrpnCp” a a
— 7 = 7(Cmcpn+1) .
Cme”""l -1 Cme” -1 1<a<z:'mp"+1 mpn-i-l

(a,p)=1
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We first prove the equation (3.4). By Lemma 3.2, we have

Cngn-‘rl _ C]Q[Cp”
(NGt — 1 CRGpn — 1
= Z %(CNCI;"HV

1<a<Npnt!
(U‘»p):l

b N
=> > W@dcpzﬂ)b

d|N 1<b<dpnt?!

(1 - @)Dlog fN(X)|X:Cpn+1—1 -

(b,pd)=1
=N Z ’Yd_lefgpnﬂ CaCpn+1-
d|N
By the equation (3.2), we have
. p(d/d .
Bipsarer =TT 0-080) 3 i Tens (o)

1IN, ld d'€Dy

where Try o = Tro(cy)/0(c,)- Since every prime divisor of d is a divisor of
d' in Dy, by the equation (2.1), we obtain

Q:an+1 TI'N7d/ (ZN)Cp'rH—l = es/pn+1 TI'N7d/ (ZN)Cer—l

= COI‘N7d/ (ez,pnﬂ )ZNcpn-!—l .

Combining the above equalities, we obtain the equation (3.4).
For the equation (3.5), by Lemma 3.2, we have

B o (CaGnrn)? ()™
aD DG Crormweyr st ooy

d'|d

d/ !
=S ud)y Y #(ggpnm“d

d’|d 1§a§(d/d/)p"+1
(a,p)=1
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- Y (¥ u(d’>)dp%+1<cdcpn+l>b

1<b<dpmt!  d'|(b,d)
(b,p)=1

b
= Z W(CdenH)b

1<b<dpnt!
(b,dp)=1

= 0n+1Calpn+1.

Therefore, by using the equation (2.1), we obtain

D(1 = @) log(fn(X))|x=¢pnyi—1= D OipnriCalpnis
deDn

= Z 07Vpn+1Cde”+1
deDpn

e e}kvpn+1 ZNCpn+1 .
This completes the proof. [
4. p-Adic L-Function

In this section, we review how to connect the Stickelberger element 6y
and the cyclotomic unit 7, with the values of the Dirichlet L-function at
negative integer respectively. Then we see that Theorem 2.1 is also induced
by using the above connection.

Let x be a primitive Dirichlet character with values in @; , whose con-
ductor divides N. We shall regard x as a character of A = Gal(Q({n)/Q).
Let Z,[x] be the ring generated by the values of x over Z,. We also denote
by x a natural map

(4.1) Zp[A][[Goo]] — Zp[X][[Goo]]

induced by x. Let k : Goo — Z, denote the p-cyclotomic character. For
every integer r > 0, one can extend the character k" of G4, to a homomor-
phism

Zp[X|[[Gool] — Zyp[X]-
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Let ¢ > 1 be an integer prime to p. We put

KX (Oy) = (1= ") 7R ((1 = eve) Oy,
which is independent of ¢. The following theorem is well known.

THEOREM 4.1 (Iwasawa cf. [W, Theorem 7.10]). For every r > 0, we
have
Kx(0y) = T = xWINL(=r,x),
lINp
where | runs over all prime divisors of Np and L(x*, x) denotes the Dirichlet
L-function.

R By Lemma 3.1, the correspondence zy +— 1 induces an isomorphism
O = Zy[A]. Let

Xen © OllGoo]] — Zp[X][[Goo]
be the map by composing the above isomorphism o= Zp|A] with the
map (4.1). Since 7, is not in Uk, we write kK x, (¥(n,;)) for (1 —
YT XL (U( ;7 7)), which is independent of ¢. Let f, denote the
conductor of x and put f, n = fy H;l, where [ runs over all prime divi-

sors of N such that [ { f,. The following theorem is known (cf. e.g. [G,
Theorem 2.13], [P, Proposition 3.1.4] and [T, Theorem 4.3 and §7]).

THEOREM 4.2. For every r > 0, we have

N

fx,N

)" TI = x@rH (@ = x(@)p")L(=r, ),
IIN

KTXZN(‘I]( 77N)) = (

where [ runs over all prime divisors of N.

Let 6 and 6" be two elements of Zy[x][[G]]. If £7(8) = £"(#') for all
r > 0, we have § = ¢’. Thus, combining the above two theorems, we obtain
the following.

ProposITION 4.3.  For any character x of A and any integer ¢ prime
to p, we have

X((1 = eve) 0x) = [T = x(Om)xe, (2 (Cy ™)),
IIN
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and

Xon (W( 73 7)) = WZN Tt~ x@i)x((1 - ) 65,).
NN

We will see that the above proposition gives the same relation as Theo-
rem 2.1. We have

(&3) = (Sl )
and

ey v, XD =1)
Xen (YON ) = T i)

Xop, (NN £, (93 7)))-

Here the second equation follows from Lemma 3.1 and the property that
U(Np,p, (u) = Try,p, (Y(u)) for any u € Uk, . By using the relations (2.1)
and (2.2), we have

Sul _{yllsd l|d
dl Q(Cdpoo) - (1 _l,yl—lé‘l—l)Gd l*d
and
Nopa(5a) 9 l|d
dl,d\Mdl) = S o1
sy "

for a prime number . One can see that x((1 — ¢vy.)Cory, 4( 7)) = 0 and
Xzfx(‘l’( ncll_%) = 0 for a proper divisor d of f,. Then, we obtain x((1 —

)& ) = x((1 = e70) 7)) and X, (V(9}7)) = xo,, (¥( 757)), by the
definition of & and Hy. Therefore, we obtain

(1= cy) &) = VZN Tt~ x@i)x((1 - ) 65,
NN

and

Ve (T(957) = [T~ x@) vy, (2(057)).
IIN

Hence the above proposition states that x((1 — ¢y.) Oy) = XZN(\I/(Sﬁ}V_%))
and ., (¥( n}\f%)) = x((1 — ¢v)6}) hold, for all character x of A.
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These relations show Theorem 2.1, that is (1 — ¢vy.) Oyzny = \I/(f)}vf%)

and ¥( ny) = G an.
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