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A Note on Class One Whittaker Functions on SO,(2,q)

By Taku IsHi

Abstract. We give explicit formulas for class one Whittaker
functions on SO,(2,q) by examing the system of partial differential
equations for their radial parts.

§0. Introduction

As is well known, Whittaker functions on real reductive Lie groups are
closely related to some fundamental aspects in the theory of automorphic
forms; Fourier expansions and construction of automorphic L-functions are
typical examples. From representation theoretical points of view, the theory
of Whittaker functions has been studied by many authors. In particular,
for split groups, Jacquet ([4]) introduced integral expressions for Whittaker
functions for principal series representation and which was later general-
ized to non-split groups. However the original form of Jacquet’s integral is
sometimes not so convenient for applications to number theory.

When we consider the class one Whittaker functions, that is, Whittaker
functions for class one principal series representations, Jacquet’s integral
can be easily evaluated by using modified K-Bessel functions for real rank
one Lie groups. For higher rank case, the first result was on GL(3,R) due
to Bump ([1]) and Vinogradov-Tahtajan ([17]). They found a integral ex-
pression involving products of K-Bessel functions. Further, Stade ([15])
extended their results and found a remarkable integral expression for the
class one Whittaker function on GL(n,R) and applied it for the compu-
tations of the gamma factors of certain automorphic L-functions. On the
other hand Niwa ([7]) and Proskurin ([11]) obtained integral expressions in
case of Sp(2,R) and Sp(2, C), respectively.

In this paper we study class one Whittaker functions on SO,(2,q) (¢ >
3), which are related to wave forms on Hermitian symmetric spaces of type
IV. Note that s0(2,3) = sp(2,R), s50(2,4) = su(2,2). In addition to the

2000 Mathematics Subject Classification. 11F55, 22E46, 33C20.

519



520 Taku IsHII

direct manipulation of Jacquet’s integral, we study a system of partial dif-
ferential equations for the radial parts of class one Whittaker functions and
give a fundamental system of solutions in terms of the generalized hyperge-
ometric series 3F5(1) (Theorem 4.1). We believe that such explicit formulas
of fundamental solutions will be useful for the construction of Poincaré series
(cf. [14)).

The author would like to thank Professors Takayuki Oda and Toshio
Oshima for their valuable comments on this paper. He also thanks the
referee for careful reading.

81. Definition of Whittaker Functions

Let G be a real connected semisimple Lie group with the Lie algebra g.
Fix a maximal compact subgroup K of G and put ¢ = Lie(K). Let g = ¢@p
be a Cartan decomposition. We fix a maximal abelian subalgebra a of p. For
nonzero « € a*, put g, ={X € g | [H,X]| = a(H)X, VH € a}. We denote
by A = A(g,a) the restricted root system and fix a positive system AT
in A. If we put n = Y A+ o, then we have the Iwasawa decomposition
g=ndadt Put N =exp(n) and A = exp(a) and hence G = NAK, the
Iwasawa decomposition of G. We denote by W the Weyl group of the root
system A. We also put p= 13"+ (dimga)a.

Now we recall the definition of class one principal series representations
of G. Denote by ac the complexifications of a and take v € ag. Let Hy,
be the space of smooth functions ¢ on G satisfying

¢(mang) = a”*"(g),

forme M,a € A,ne N and g € G. The group G acts on H,, by right
translation and define the representation of G on H, . We call this induced
representation 7, = Ind$; 4 n (13 ® a* TP @ 1x) the class one principal series
representation of G. Define an element 1, in Hr, by 1,(g) = a(g)"*? with
g = n(g)a(g)k(g) (n(g) € N,alg) € A, k(9) € K). Then 1,(namgk) =
a’tP1,(g) for n € Nya € A,m € M,g € G and k € K, that is, 1, is a
K-fixed vector in Hy,.

Let U(gc) and U(ac) be the universal enveloping algebras of gc and
ac, respectively. Set U(ge)® = {X € U(ge) | Ad(k)X = X, Vk € K}.
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Let p be the projection U(gc) — U(ac) along the decomposition
U(gc) = Ulac) ® (nU(gc) + Ulgc)b).

Define the automorphism « of U(ac) by v(H) = H+p(H) for H € ac. For
v € a}, define an algebra homomorphism y, : U(gc)® — C by xu(2) =
v(yop(z)) for z € U(gc)®. Note that y, is trivial on U(g)® N U(g)t
and the restriction of x, to the center Z(gc) of U(gc) coincides with the
infinitesimal character of the class one principal series representation 7, .

Let 7 be a unitary character of N and CP°(N\G/K) be the space of
C*°-functions on G satisfying f(ngk) = n(n)f(g) for n € N, g € G and
keK.

DEFINITION 1.1. For a unitary character n of N and an algebra homo-
morphism Yy, : U(gc)®

Wh(v,n) = {f € C*(N\G/K) | 2f = xu(2)f, ¥z € U(gc)"}.

the space of class one Whittaker functions on G. We also denote by
Wh(r, 7)™ the subspace of moderate growth functions in Wh(v, ) ([18]).

— C, we call

REMARK. In case of G = 50,(2,q) (¢ > 3),
Wh(v,n) ={f € C;F(N\G/K) | 2f = xu(2)f, Vze€ C[Ch,Cul},

where Cy and Cy are generators of Z(gc) with degree 2 and 4 respectively

([6, §4]).
THEOREM 1.2 (Hashizume [3]). Under the above notation
dimc Wh(v,n) = |[W].
Moreover,

dime Wh(v, 7)™ < 1

and the unique element in Wh(u,n)mOd

J7(9) Z/Nlu(solng)n_l(n)dn.

Here sq is the longest element in W and dn is the normalized Haar measure
on N as in [3, §1].

is given by Jacquet’s integral:
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§2. Structure Theory for SO,(2,q) (¢ > 3)

We give explicit descriptions of the symbols introduced in §1 in our case
G = 50,(2,q), the identity component of SO(2, q).

1 0
S0(2,q) = {g e 5L<2+q,R>‘tgfz,qg=Iz,q = ( 0 1 )}
q

) ={X € My((R) | 'XIp g + g X =0},
0

50(2,

(%2
({4 D)xemam)

a=RA; ® RA; with A = E1,q+2 + Eq+271, Ay = E27q+1 + Eq+172,

ki 0
{5 n)
A = {exp(log(a;)A; + log(az)As) | a1, as > 0},

A = A(g,a) = {£e1,tes, +e; L ea} with
ei(a1 Ay + agls) = a; (i =1,2),
AT = {e1,e9,e1 £ e},
ge, = O /RX;, gey = B[R}, gey-ep = RZ1,
Oe,+e; = RZ2, with
Xi=Fiito+ Eiyo1 — Eigogio+ Egroi42 (1
Yi=Esito+ Eivop — Eitogi1+ Eqr1,i12 (1
Zy = (—Ei12 — Ei1 g1+ E21 — Eo g0
— Egt11 + Egr1,g+2 — Egro2 — Egro,4+1)/2,
Zy=(—Fip2+ FEig41+ Ea1 — Eo g0
+ B0 — Egrrgt2 — Eqra2 + Eqro041)/2,
(E;; is the matrix with 1 at (4, j) entry and 0 elsewhere),
W =Gy x (Z/2Z)?, s0 = Iay,
n(Z1) =2v=1m, n(Y:) =2vV=1&, ([0,0] = ge; B Geyen)s

-2
put ng := /D7 &2,

9

=2

4

b

) ’Xl = _tXl S MQ(R), Xy = —tXQ < Mq(R)} ,

e S

ki€ SO2), ko € SO(q)} ;
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p=1(q/2,q/2 1),
v=(v1,12),

2 2-1
vip _ a'fl+q/ ag2+q/

a (a = exp(log(a1) A1 + log(az)A2)).

83. System of Differential Equations

In this section we write down a system of partial differential equations
satisfied by class one Whittaker functions. Because of the Iwasawa decom-
position G = NAK, the value of f € Cp°(N\G/K) is determined by its
restriction res|4(f) to A. We call f|4 := res|a(f) the radial part of f. For
a linear operator D : Cp°(N\G/K) — Cp°(N\G/K), there exists a linear
operator R(D) : C*(A) — C*(A) satisfying R(D) ores|s = res|4 o R(D).
We also call R(D) the radial part of D. Any X € g can be regarded as
a differential operator on C*°(G) by (Xf)(g9) == L(f(g exth))’t:0 for
f € C®(G), and we extend it to the action of U(gc) as usual manner.
Then the following can be easily shown.

LEMMA 3.1.  Let ¢ = f|4 be the radial part of f € C°(N\G/K). Then

(1) (R(A))¢)(a) = aiz-¢(a) (i=1,2),
(2) (R(Xi)¢)(a) =0

(3) (R(Yi)$)(a) = 2v/=T &iaz ¢(a)

(4) (R(Z1)$)(a) = 2v=Tmaia; " ¢(a),
(5) (R(Z2)¢)(a) = 0.

In the same way as in [6], we can deduce the following:

THEOREM 3.2. Let f € Wh(v,n) be a class one Whittaker function on
S0,(2,q). We introduce new variables given by y = (y1,y2) = (a1/az,a2)
and put fla(y) = y(f/ qﬁ(y). If we denote 0; = yia%i then ¢(y) satisfies

(3.1)  [207 + 05 — 20105 — 8niyt — dnsys — (Vi + 13)]é(y) = 0,

(3.2) (03 — 23102 — V2 4+ 13) (05 — 2010, + VP — v3) — 160759203
8n3y5 (05 — 20100 — 201 + 202 + 2) + 16m5y5]6(y) = 0.
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PROOF. By using Lemma 3.1, we can compute the radial parts R(Cb)
and R(Cy). The explicit formulas of Cy and Cy are as follows ([6, Proposition
4.1)):

Cy = A% + A% —qA; — (q — 2)A2 + 2(212_1 + ZQZ_Q)

+D (XX YY) - YK
i i<j

and
Cy=4ATA3 — 8A1Ay(Z1Z 1 — ZoZ_5)
+A(Z32% + 2372 ,) — 821727 17
=D (XX HYEYD) 42 (XXX X+ YYYLY )

i i<j
—2) (VY XX 4 YV XX ) 44> VY XX
i£] i#]

14 Z(A%YZY_Z- + A3X; X))

+4 i(Z1Z1 + Z2Z2)(XiX_i + YY)

+ 4i(2_1Z_QXi2 + 21 2o X2 — 2 Z5YE — Z 1 Z5Y2)
+4 Z(A1 — A (Z_oYi X + ZoY_i X )

+4) (A + A)(ZAY-i X + Z1YiX )

— 43 (A} + AKE -8 (2171 + ZoZ ) K2,

i<j 1<j

—4) (AIX X+ AYY K —4 Y (XX + VYK,
i#£j 1<g, 1#1,j

+4 Y (XX + XX+ VY + YY) K Ky
i<j, l#£4,j

—AY (DX i+ ZoX Y j+ Z XY i+ Z o X;Yi) K
i#
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2 2 2 2 2 2
+4 Z (KK, + Ko K, + K, KG)

-8 Y (KK KimKjm

+ K j K i K K + K jKjm Ki ) Kom,p)
—4(q—2)A2Ay — 4qA1 A3
—4q—1V)A1Z1Z 1 —4(q—1)A1Z27Z 5
—4(q—5)AsZ1Z 1 — Aq+1)AsZ2Z o

)

—2(qg—1 ZAlXX_Z—ZL q—2) ZAlYY_Z

Z A X; X — Z AY;Y

+4qZA1K +4(q—-2)>  AK}
i<j 1<j
+ > {2(q = 5)(XiX_j + YiYj) +2(q = 3)(X; X s + YY) } K
1<j
+2(¢=3) Y (Z1YiXoi+ ZoY_iX i — Z 1Yoy X; — Z2YiXo)

—~ o~ o~ o~

+4 Z (Ki,jKi,lKj,l + Ki,ij,in,m

<j<l<m
+ Ki 1 Kim K m + K1 K j K 1)

1
(¢* — 49q + 96) A3 — 3(q2 + 11 — 36) A3 + 4(q — 2)* A1 Ay
1
(q— V(g —12)(Z1Z1 + Z2Z_2) + g(QQ — 25q +192) ZK2
1<j

(q—4)(g—9)) ViV,

i

(q—2)(g—4)(qg—9)As.

(¢ —37¢+108) Y X;X_; —

i

(¢° — 37¢% + 156 — 168) A1 +

+
Wl oo|>—~ wlwwl»—l

Wl Wi

Here KZ‘J‘ = Ei+27j+2 — E]‘+271‘+2 €t (1 <i <y < q-— 2). Since f is
annihilated by U(gc)®, g.,U(gc) and ge,+e,U(gc), we have

(R(C2)f)(a) = (R(AT + A5 — qA1 — (¢ = 2)A2 + Y +2Z7) f) (a)
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and

(R(Cy)f)(a) = (R(4ATA3 — 8Z7 A1 Ay + 471 + AY AT +427Y
+4qZ3 A1 +4(q— 2)Z3 Ay — 4(q — 2) A2 Ay — 4qA1 A2 — 4qY Ay
— 3a(g — AT — §(¢ = 1)(¢ — 12)A3 + 4q(q — 2) A1 Ay
—3(7q—19)¢Z} — (¢ —1)(¢ - 12)Y + 5¢* (¢ — 1) Ay
+3(g = D(g—2)(g — 12)42) f) (a).

Here Y = Y2 Y2, Combined with Lemma 3.1 and

2
q
xu(Co) = v +v3 — 4 q—1,

2
1
Xw(Ca) = 4ivf — (40" = 13 +12)(v] + 1)
1
+—(5¢* — 30¢° + 80¢* — 100q + 48),

12

([6, Lemma 6.5]) we get a system of differential equations. Note that the
equation (3.2) can be deduced from R(C})f = x,(C})f with C} = Cy —
C3 +3(g—1)(2¢ = 3)Cs. O

REMARK. (1) By taking notice that ¢ does not appear in (3.1) and
(3.2), we can see that class one Whittaker function on SO, (2,q) differs
from on SO,(2,3) only by a simple factor (ajas)=3)/2,

(2) If we denote by Pi¢p(y) = 0 and Pr¢(y) = 0 the equations (3.1) and
(3.2) respectively, we can check that P; and P» are commutative. Then
our calculation is correct from the result of Oshima and Sekiguchi ([10])
which implies that P, can be uniquely (modulo Pj, P?) determined from
the commuting relation [Py, P»] = 0 (and the invariace under the action of
the Weyl group W). See also the result of Ochiai ([9]).

(3) If we substitute ¢ = 3,4 in the above system, it agrees with the system
of differential equations of principal series Whittaker functions on Sp(2, R)
and SU(2,2) obtained by Miyazaki, Oda ([8]) and Hayata ([5]) respectively.
But they studied more general Whittaker functions not only for the class
one principal series.
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84. Explicit Formulas of Whittaker Functions

We first consider formal power series solutions around (y1,y2) = (0,0)
and construct the space of solutions. Our formulas include (terminating)
generalized hypergeometric series 3F»(1) (cf. [16]). We put

S(y) = D conllmly)*™ ™ (122)>" T (co0 # 0).

m,n>0
Since the characteristic indices satisfy
2r8 + 15 — 21y — (V2 +13) =0,
(7’22 — 27Ty — 1/12 + 1/3)(722 — 27T + 1/12 - u2) =0
from Theorem 3.2, we have
(11, 72) ={w(vi, 11 + o) |w e W}
= {(v1, 11 £12), (—v1, —v1 £ 1),
(1/2, :tVl + VQ), (—Vg, :|:V1 — 1/2)}.
In case of (11,72) = (v1,v1 + v2) we have the recurrence relations
(4.1) {2m2 +n%—2mn+ (1 —wv)m +vantcemn — Cmp—1 — 26m—1n =0
and
{2n% — 4mn — 2(v1 + v2)m + 2v9n — v} + V3 }
An® —2mn — (1 + v2)m + vankemn
(4.2) —{4n? — 8mn — 4(v) + v — I)m + 4(vy — D)n
— V% + U22 — 219 + Q}Cm,n—l

+2¢mp—2—2(2n+ v + 1/2)20,”_1,” =0.
From (4.1) and (4.2) we get

THEOREM 4.1. We assume that vq, 19 and v1 £vo are not integers. Let

—m, —n — l/1+1127 n 4 v14iv2 +1
¢(V1,V2)(y) = Z 3F2< V1;V2 _’_21’ 1/142rl/2 _|_21 1

m,n>0

)2m+u1( 2n+vi+uvo

(Im1ly P
min! (v1 + 1)pm(va + 1),
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Then the set { Gy, v,)(y) | w € W} forms a basis of the space of solutions
of the system in Theorem 3.2. Here (a)y = I'(a + k)/I'(a) and

ai, ..., a B (al)n---(a)nﬁ
qu<b1, R Z) = B o T

n>0
the generalized hypergeometric function.

PROOF (cf. [16]). Since the relation (4.1) determines ¢y, , uniquely up
to constant ¢, we have only to prove that the above ¢(,, ,,)(y) satisfies
the recurrence relations (4.1) and (4.2). We first put

P (M52 + 1) (B2 + 1)
’ m'(ul—l—l)m
_ F(—m, —p— Utz g4t 4 '1>
- nov 4], My
C(n+vi+ D+ + 1)y
- m!(ul—i—l)m

vitva
-m, Tn— e

—m — 1
- 3k
-m-n—rviy, —m-—n-—vy — 1V

).

Here we used the formula

3F2<—m, a, b ‘1> (= a)n(d—a)n

c, d (m(d)m

o M a, a+b—c—d—m+1 1
32 a—c—m+1,a—d—m+1

([12, 7.4.4.81]). Then our task is to show

{2m2 +n®—2mn+ (r1 —ve)m + ventdy p

(43) | % V14
—2(m+ 252)(m 4+ 232)dy 1, — n(n + v2)dim -1 = 0.

If we use the relation

(1—2)_“'2F1<a’ b ‘1) - i Mﬁ

Cc
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for |z| < 1 (]2, p-187]), then we have
e}
Fu(2) =Y dmpz™
m=0

= (1 - z)" 01 t)/2, ntuvitl ntvitre+l )
r+1 )

Therefore to show (4.3), it is sufficient to verify that

[2(1— 2 2+ 3)2 4 (0 — v — 20 2
Sl 4! cr V1 — b2 an “dz
(4.4) _ 2(V1 ; 2 1)(”1 ; 2 1) +n(n+ Vz)}Fn(Z)

—n(n+w)F,—1(z) =0.

If we write 6,(z) = (1 — 2)"T(1+%2)/2 and F,(2) = 6,(2)pn(z), then

_1dF, d v1 + 12 1
RRLAN T Jonto,
(2) dz dz (n—l— 2 )1_Zp(z)

szn
dz?
d? V1 + 12 d
Vi + 1o Vi + 1o z
-1
Y Y

= [+ L

Sn(2)7L2(1 = 2)

= z(l —2)

+(n

+{n+vi+1)(n+vi+1n+1)
v+ v+ z
7t 25 = ) )

by the hypergeometric equation. Then we can see that (4.4) is equivalent
to

+ (n+

[(2n+ v 4+ 1)1 — z)zdiz +{—nn+w)(l-=2)

—2n+ v+ )20+ v + v+ 1)z} pa(2) + n(n + 12)pp—1(2) =0,

and which is easily shown by the power series expansion of p,(z) = 2F1(2).
The recurrence (4.2) can be checked in the same way. O
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Now we treat the Jacquet’s integral to find a unique element in
Wh(v,n)™°d (Theorem 1.2), and which is suitable linear combinations of
a(f/2 1/2- 1<Z>w (n (@) (w € W). Though, in view of remark after Theorem
3.2, we have only to consider the Jacquet’s integral for SO,(2,3). In case
of ¢ = 3, we can write an element of N as

n(n()’ ni,n2, n3)

= exp(n0Y1 + (nz + n0n3/2)X1 +nsZy + (m + ngng + ngng/G)ZQ)

1
1+ n —
2 0 2
= no 1 —Nno
2 2
"y _ g
2 no 1—-
1
14 M- mns ni+ns ni—nz  —M3t+ning
+ T3 n2 2
ni +n3 __nitng
t 1 0 0 t
no 0 1 0 —nN2
n15n3 0 0 1 —n12+n3
2 2
ng—ning __nitng n]1—ns3 _ ng—ning
2 2 ng 2 1 2

Then n(n(no, n1,n2,n3)) = exp(2v/—1(nin3 + neng)). We denote
a = a(ay, az) = exp(log(ay)A; + log(az)Asz) €

To write down the Jacquet’s integral .J;! for SO,(2,3), We consider the Iwa-
sawa decomposition n'-a(a},ay) -k (n € N,k € K) of s5*-n(ng, n1,n2,n3) -
L.n.ae K, we get

a(ay,az). Since (son'a’)~
a'1 = a1a2/A1, a'2 = Al/Ag,
with
A = {a1a2 + n3a1a2 + 2n2a1a2 + nlal + (ning — n2) }1/2
Ay = a?a3 +nda? + (nons + na)%a3 + (nogng +nq1)?.
Thus
T)(a) = (araz)"+3/?

. / A AIV1+V271A;V271/2 exp(—2\/ —1(7]1713 + ngng))dnodnldngdng.
R
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If we change the variables (t1,t2) = (1/a1a2, \/alagl), we can see that it
becomes the Jacquet’s integral for Sp(2, R) Whittaker function (The max-
imal split torus of Sp(2,R) is {diag(tl,tg,tl_l,tgl) | t1,t2 > 0}). If we first
integrate with respect to ng, then

Tia) = 2 BT Dy +1/2)) a2

—1/2 A —v1—1o—1 ﬂ
s Ag AQ K_,,Q (27]20,1 A3)

—1
- exp (2772\/—_1n2(n$a1a2A+ ity ) — 2\/—_1171n3) dnidnadng.
3

Here Az = a:{’a;l + n%alag + n%alaz_l and K,(z) is the modified Bessel
function. This expression is similar to the formula of Proskurin ([11,
p.161(2.4.40)]) for Sp(2, C)-Whittaker function. By following the same ma-
nipulation as in his one ([11, pp.162-166]), we finally reach the following
integral expression.

THEOREM 4.2. For Re(s1) > |Re(v1)], |Re(r2)| and Re(s2) > |Re(v; +
v2) /2|, the radial part of class one Whittaker function on SO,(2,q) is

a1 \(—vi—v2+q)/2
W(Zl,m)(a) = (|771’a_;> (772a2>

(e ehyile ] a
S Kca Cim 2T+ 1)
Ky 40y) /2 (2m2a2y/1 + x4 y)

(ﬂ)@ﬁw(M)<”l—”2>/4d_w@
l+ax+y y(1+y) ry

(r1+v2)/2+q-1

up to constant. Further

W, )
= 3 w(PEmEm)D (-0 () M, 0)

weWw

Here M, ,\(a) = H(mla1/a2)"?(12a2) 7 Guuy ue) (@)

PrROOF. The latter identity was shown by Hashizume ([3, Theorem
7.8]) in more general setting, though we can prove it directly by considering
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a Mellin-Barnes integral expression for W("V ) V2)(a) and residue calculus (cf.
[14]). Let

W, (@) = (Imlai/az)?*(n2a2) " W, (a)

= (Imly0)*(moy2)" W, (),

and

V = W dyy dys
_ n s s
(v1.02) (515 52) /0 /0 (1,00) @) (I ly1)* (m292) QI s

be the double Mellin transform of WZL ) If we change the order of inte-
gration and use the formulas

/ K, (ax)z* tdx = 25_2a_5F(s ; V)I’(S + V)
0

for Re(s) > |Re(v)|, a > 0 and

/ / e L1 )71+ 2) (1 + o+ y) "Cdady
0 Jo

(@) (—a+c+e)l(=b+d+e) < a, b, e
B T(c+e)l'(d+e) 2\ cte dte

)

for Re(c+e€) > Re(a) > 0, Re(d+e) > Re(b) > 0 and Re(c+d+e—a—0b) > 0,
then V{,, ,,)(s1, s2) becomes

2_2F(81 +V1)F(81 —V1)F(S1 +V2)F(81 —Vz)

2 2 2 2
_F(SEQ)P(52+V21+V2)F(32+V21_VQ)F(32_1/21+V2)
4.5 _
(4.5) _(F(81+522+V1)F(51+822+V2)> 1

s1itv1  si1tve Satvitre
<3F

2 2 2
S1t+s2+v1 S1+S2+v2
2 ’ 2

)
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— 9 QF(S1+V1) ( ZUI)F(SI;UQ)F(&;UQ)
P(52+V1+V2)F(82—V21—V2)F(82+V21—Vz)r(82—v21+v2)
4.6 _ -
(4.6) (F(81+82+V1)F(81+522 1/1)>1

82 s1+1v2 S1—V2
2 2

3F2 81+82+V1 S1t+s2—11
2

2 9

! )
Here we used the formula

@ b, ¢ ) _F(d)F(d+e—a—b—c) e—
2 d, e I'(d+e—a—bI(d— o) d+e—a—b e

)
for Re(d+e—a—b—c),Re(d—c) > 0 ([12, 7.4.4.1]) with a = (sa+v1+12)/2,
b=(s1+11)/2,c=(s1+12)/2,d=(s1+ s2+12)/2, e = (51 +s2+11)/2.

We notice that V(,, ,,)(s1,s2) is invariant under the change (v1,v2) —
(v2,v1) by (4.5) and (v1,v2) — (—v1,1v2) by (4.6), thus, under the action of
the Weyl group W to the parameter (1, 12) of the principal series.

Mellin inversion formula implies

~ 1
Wi(y) = (ry=1)?
o1+v—1oo po2+v/—1loco
3 / Vw51, 52) (milyn) = (may2) = ds1dss.
1—v/—1oo Jog—/—1oc0

Here the paths of integration are taken as to the right of all poles of
M (s1,s2). Now we move the paths to the left and evaluate the residue
at the poles

{(s1,82) =w(—2m —v1,—2n— (v1 +10)) |w € W, m,n € N}
of M (s1,s2) then we get the assertion. For example,

Res (5, ) =(—2m—v1,~2n— (1 112)) Viwn wa) (515 82) (Im|y1) " (n2y2) ~*2)
[(—m —v)I(—m — 1520 (—m — 1522)
AT (—=m — n — 1) (—m —n — B322)
v+
2 )

‘T(=n =)l (—n — )l (—n —
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(—1)mtn —-m, —n —m — Y452
- ———3F 1
342 —m V1t
2

m!n! —n—v, —Mm-—n—

)2m+u1 ( )2n+u1 +vo

“(Imly
= 27T (v (—12)(

n2Y2

-+ 2 -V — 12
I
=
o 2o e )
c 3142 _ 4
V12V2 + 17 1/12V2 + 1
(I lyn) > ™ (o) >+
mIn! (v1 4+ 1)p(va + 1),

Here we used

3F2<

-m, a, b . ~(c=a)m(b)m 7 -m, d—b, 1—c—m 1
c, d  (©Om(d)m 2\ 1—-b-—m,a—c—m+1

([12, 7.4.4.87) witha = —n — 52 b=n+ 232 41 c =42 4] d=

vitvo
2

+ 1 and I'(z)['(1 — z) = n/sinwz. O
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